Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
Authors
Abstract:
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is forecasted. The comparison of performance of forecasting models used to forecast Iran's inflation has been done based on the Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) of the models. Due to the annual values of Inflation, liquidity, GDP, prices of imported goods and exchange rates at free market to estimate different models in this paper and compare root mean square error and Mean Absolute Percentage Error of models by which inflation has been forecasted, neural network model had better performance than others models in forecasting Iran's inflation. Indeed root mean square error and Mean Absolute Percentage Error of neural network model have less value rather than root mean square error and Mean Absolute Percentage Error of other forecasting models.
similar resources
Learning Latent Networks in Vector Auto Regressive Models
We study the problem of learning the dependency graph between random processes in a Vector Autoregressive (VAR) model from samples when a subset of the variables are latent. We show that the dependencies among the observed processes can be identified successfully under some conditions on the VAR model. Moreover, we can recover the length of all directed paths between any two observed processes ...
full textBayesian Forecasting (the Levels) of Vector Autoregressive Log-transformed Time Series Bayesian Forecasting (the Levels) of Vector Autoregressive Log-transformed Time Series Bayesian Forecasting (the Levels) of Vector Autoregressive Log-transformed Time Series
Bayesian dynamic models, stochastic simulation and Bayesian econometrics. of Rio de Janeiro in 1993 and is presently a lecturer of Statistics at Federal University of Parann a (Brazil). Research interests include Bayesian inference, stochastic simulatio n and Bayesian dynamic models. Abstract Forecasting the levels of vector autoregressive (VAR) log-transformed time series has shown to be awkwa...
full textAuto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting
this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects th...
full textGreat Salt Lake Surface Level Forecasting Using Figarch Modeling
In this paper, we have examined 4 models for Great Salt Lake level forecasting: ARMA (Auto-Regression and Moving Average), ARFIMA (Auto-Regressive Fractional Integral and Moving Average), GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) and FIGARCH (Fractional Integral Generalized Auto-Regressive Conditional Heteroskedasticity). Through our empirical data analysis where we div...
full textGeneralized Autoregressive Conditional Heteroskedasticity
A natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process introduced in Engle (1982) to allow for past conditional variances in the current conditional variance equation is proposed. Stationarity conditions and autocorrelation structure for this new class of parametric models are derived. Maximum likelihood estimation and testing are also considered. Finally an e...
full textModeling and Forecasting Iranian Inflation with Time Varying BVAR Models
This paper investigates the forecasting performance of different time-varying BVAR models for Iranian inflation. Forecast accuracy of a BVAR model with Litterman’s prior compared with a time-varying BVAR model (a version introduced by Doan et al., 1984); and a modified time-varying BVAR model, where the autoregressive coefficients are held constant and only the deterministic components are allo...
full textMy Resources
Journal title
volume 9 issue 2
pages 119- 128
publication date 2017-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023